Masimo softFlow[™]

Nasal High Flow Therapy for Spontaneously Breathing Adult, Paediatric, and Neonatal Patients in Hospital and Long-Term Care Facilities

- > Respiratory support delivered through a soft nasal cannula interface
- > Wide flow range from 10-60 L/min, or 2-15 L/min in junior mode, adjustable in 0.5 L/min steps to permit flow rate to be tailored to each patient
- > Integrated flow driver provides flow without the need for wall air supply
- > Add supplemental oxygen from 0-60 L/min and up to 100% FiO2 for adults, and from 0-12 L/min in junior mode, from wall supply, oxygen cylinder, or concentrator
- > Warmed humidification of respiratory gas in 1°C steps from 30°- 37°C to tailor humidity to the patient to enhance therapy comfort and aid in mucous clearance^{1,2}
- > Condensate-free delivery of a consistent, high-velocity flow during inspiration and exhalation to enhance therapy benefits
- > Bacterial/viral filter between device and patient, rather than between device and room air, to reduce risk of cross-contamination
- > Entire gas delivery circuit between the flow generator and patient is single-patient use, reducing the time needed to clean and disinfect between patients

softFlow Nasal Applicator Available in small, standard, standard-plus, and large sizes

Veoflow Tracheostomy Interface and softFlow Tracheal Interface Applicator

NeoFlow ultra soft High Flow Cannula Available in premature, infant, large infant, and paediatric sizes

Product Features and Benefits

- > Flow rate is adjustable in 0.5 L/min steps to allow flow to be tailored to each patient's needs
- > Adjustable humidity/dew point settings from 30-37°C, adjustable in 1°C steps to tailor to each patient's needs
- > Integrated micro-particle filter
- > Nasal applicators include several sizes of soft, flexible nasal prongs to suit a wide range of patients
- > Disposable bacterial/viral filter (bacterial efficiency >99.999%; viral efficiency >99.99%) between device and patient reduces risk of cross-contamination and transition time between patients
- > Autofilling humidification water chamber eliminates need to manually refill humidity chamber between uses
- > Entire respiratory circuit is disposable to minimise risk of cross-contamination and reduce time needed to clean and disinfect the device between patients

PERFORMANCE DATA		
Intended Population	I neonatal patients	
softFlow mode	10-60L/min	
junior mode		
Supplemental Oxygen		
softFlow mode		
junior mode		
Humidity Dew Point		
Event Memory	12 therapy months	
ELECTRICAL		
AC Power Requirements		
ENVIRONMENTAL		
Ambient Temperature	58°F (-25 to +70°C)	
operating training		

Storage Humidity < 93 % RH

PHYSICAL CHARACTERISTICS	
Dimension	12.6 in x 8.2 in x 12.6 in (32 cm x 210cm x 32cm)

TECHNICAL DATA

Medical Device (93/42/EEC)	Ila
Safety class, electrically	
Safety level "applied part"	BF
Ingress Protection	IP21
Electromagnetic compatibility	EN 60601-1-2, Class B
Electrical safety	according to EN 60601-1
	CSA C22.2/No 60601-1

¹ Hasani A et al. *Chron Respir Dis* 5, no. 2 (2008): 81-86.

² Roca O et al. *Respir Care* 55, no. 4 (2010): 408-413.