NEWS & MEDIA:

 
 

Masimo logo

Masimo Announces FDA Clearance of Radius PCG™ for the Root® Patient Monitoring and Connectivity Platform

Radius PCG with Bluetooth® Connectivity Seamlessly Integrates Tetherless Mainstream Capnography with Root

Irvine, California – April 12, 2021 - Masimo (NASDAQ: MASI) announced today that Radius PCG™, a portable real-time capnograph with wireless Bluetooth® connectivity, has received FDA 510(k) clearance. Radius PCG connects with the Root® Patient Monitoring and Connectivity Platform to provide seamless, tetherless mainstream capnography for patients of all ages. Radius PCG joins the growing family of tetherless Masimo technologies that includes Radius PPG™, which offers Masimo SET® Measure-through Motion and Low Perfusion pulse oximetry, and Radius T°™, which provides continuous temperature measurements. Radius PCG requires no routine calibration, with accurate end-tidal carbon dioxide (EtCO2) and respiration rate measurements and continuous EtCO2 waveforms displayed within 15 seconds – all in a small, portable package that can fit in the palm of a hand.

patient in bed with masimo root brain monitors placed on forehead. adjacent product shot of  Masimo Radius PCG on white background

Masimo Root® with Radius PCG™

"Radius PCG has been a game changer for our clinical team," commented Joseph DiMartino, MSN RN, NE-BC, CCRN-K, Associate Vice President of Nursing at Temple University Hospital in Philadelphia. "It provides us with a portable and rapid measure of capnography for confirming airway placement in accordance with AHA guidelines."

Wirelessly connected to Root, Radius PCG presents a compelling mainstream capnography solution, offering:

  • Cable-free Capnography: High-quality capnography without a tethered connection to Root reduces the possibility of an interruption in capnography monitoring by minimizing tugging on the breathing circuit. In busy operating rooms, where space is already at a premium, and where capnography cables can easily be pulled and dropped on the floor—potentially damaging the fragile and expensive capnography sensor head—the reduction in clutter may be especially welcome.
  • Automated Documentation: Root, in conjunction with the Masimo Hospital Automation™ Platform, automates electronic charting of patient data, including the data collected by Radius PCG, in hospital electronic medical record (EMR) systems, to simplify and speed workflows, as well as reduce the likelihood of transcription errors.1
  • Maximized Data Visibility and Manipulation: Root's large, multi-touch, high-resolution screen provides an easily interpretable secondary display of large, crisp EtCO2 waveforms, improving visibility and assisting clinicians in identifying wave patterns suggestive of airway obstruction or tube dislodgement. Clearly displayed trend data for up to 96 hours helps clinicians review patient progress over time, helping guide ventilation efforts. And the intuitive touch-screen interface allows clinicians to quickly adjust the trend display range and configure alarm settings to meet the needs of each patient.
  • Hassle-free Connectivity: Radius PCG quickly and effortlessly pairs with Root via Bluetooth, supporting seamless integration into clinical workflows while providing the benefits of reliable capnography.

Tom Friedland, MD, Emergency Medicine Physician, described Radius PCG as "the easiest and most affordable solution to switch your hospital from the unreliable color change CO2 detector to waveform capnography. #NoTraceWrongPlace."

"Radius PCG is indispensable for emergencies, as well as for monitoring the COVID patients in our house," added Kai Schurig, Head of the Biomedical Department at Marien Hospital in Hamburg, Germany. "These handheld devices are very reliable and fail very rarely. The users are very satisfied and treat the device accordingly."

Root is a powerful, expandable hub that integrates an array of technologies, devices, and systems to provide multimodal monitoring and connectivity solutions. Root’s plug-and-play expansion capabilities allow clinicians to simultaneously monitor with Radius PCG and many other measurements, such as Masimo SET®, advanced rainbow® Pulse CO-Oximetry measurements, O3® regional oximetry, and SedLine® brain function monitoring, for expanded visibility of patient status. Using Root in combination with the Hospital Automation Platform, monitoring data from all connected devices can be automatically charted in EMRs.

Joe Kiani, Founder and CEO of Masimo, said, "With its wireless connectivity, Radius PCG is a powerful and useful tool for assessing end-tidal CO2 in a multitude of clinical scenarios. Masimo continues to make clinically relevant, accurate patient data available, helping clinicians gain the insights they need to make the best decisions and improve patient outcomes."

@Masimo || #Masimo

About Masimo

Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.2 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,3 improve CCHD screening in newborns,4 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.5-8 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,9 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.10 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris® Gateway, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView :60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. The Value of Medical Device Interoperability. West Health Institute. 2013.
  2. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  3. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  4. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  5. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  6. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  7. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  8. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  9. Estimate: Masimo data on file.
  10. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements

This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Root® with Radius PCG™. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Root with Radius PCG, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Go to top

Masimo logo

Study Investigates the Effects of Ventilatory Rescue Therapies on the Cerebral Oxygenation of COVID-19 Patients Using Masimo O3®

Neuchatel, Switzerland – April 6, 2021 - Masimo (NASDAQ: MASI) today announced the results of a prospective, observational study published in Critical Care in which researchers in Genoa, Italy evaluated the impact of a variety of rescue therapies on the systemic and cerebral oxygenation of mechanically ventilated COVID-19 patients suffering from acute respiratory distress syndrome (ARDS).1 To gauge the impact, the researchers used the Masimo Root® Patient Monitoring and Connectivity Platform with O3® Regional Oximetry, which uses near-infrared spectroscopy (NIRS) to enable monitoring of tissue oxygen saturation (rSO2) in the region of interest, such as the brain.

patient in bed with masimo root brain monitors placed on forehead. adjacent product shot of  Masimo Root with Rad-7 sedline and 03 monitors

Masimo Root® with O3® Regional Oximetry and SedLine® Brain Function Monitoring

Dr. Chiara Robba and colleagues noted that “neurological complications are common in mechanically ventilated critically ill patients with COVID-19 and may lead to impaired cerebral hemodynamics,” and further, that respiratory rescue therapies “may have detrimental effects on brain physiology.” Observing, however, that there is currently little data available regarding the effect of rescue therapies on these patients’ brains, and in particular on cerebral oxygenation, the researchers sought to assess the impact of different ventilatory rescue therapies on the brain to help guide clinicians in choosing the most appropriate therapies for their COVID-19 patients.

The rescue therapies studied were recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide removal (ECCO2R). To assess impact, the researchers measured (before and after the application of each method) arterial oxygen saturation (SpO2), partial pressure of oxygen (PaO2), partial pressure of carbon dioxide (PaCO2), and cerebral oxygen saturation (rSO2). rSO2 was obtained using Masimo Root with O3, which also allowed them to observe several additional parameters unique to Masimo O3: ΔO2Hb, which monitors relative changes in the oxygenated hemoglobin component of rSO2; ΔHHb, which monitors relative changes in the deoxygenated hemoglobin component of rSO2; and ΔcHb, which monitors relative changes in total cerebral hemoglobin or blood volume. As a secondary aim, the researchers sought to evaluate the correlation between systemic and cerebral oxygenation.

The researchers found that the four rescue therapies had varied impact on cerebral oxygenation and the other measured parameters, noting in particular that after RMs, while there was no significant change in PaO2 or PaCO2, there was a significant decrease in rSO2. After PP and after iNO therapies, both PaO2 and rSO2 increased; ΔcHb also increased, corresponding to increased cerebral blood volume. After ECCO2R, both PaO2 and rSO2 decreased.

The researchers concluded, “Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. … The choice of rescue strategy to be adopted should take into account both lung and brain needs.”

They also noted, “To our knowledge, this is the first study investigating the early effects of rescue therapies on systemic and cerebral oxygenation and their correlation in critically ill patients with COVID-19-associated ARDS. The use of multimodal neuromonitoring, including new indices such as ΔHHbi + ΔO2Hbi, enabled us to better investigate the specific consequences of each ventilatory rescue strategy for brain and lung function. This is particularly important, especially in the early phases after rescue therapies application, when most of the effects on cerebral physiology are mainly acting.”

Dr. Robba and study co-author Dr. Basil Matta, Senior Medical Director at Masimo, commented, “The ability to observe relative changes in oxygenated, deoxygenated, and total hemoglobin with O3’s delta indices provided us with better insight into why brain saturations change as a result of interventions, and allowed us to better understand the interactions between systemic and cerebral hemodynamics. For example, we saw that turning patients prone resulted in improved systemic and cerebral oxygenation, whereas the lung recruitment maneuver did not improve systemic oxygenation, and even had an adverse effect by reducing brain oxygen saturation.”

They continued, “Above all, the main objective of improving the oxygen content of the blood is to deliver oxygen to vital organs, the most important of which is the brain. Masimo O3 provides the clinician with the ability to assess the impact of any medical intervention aimed at improving oxygenation. O3’s hemoglobin indices were critical to our understanding of the effects of our interventions on the brain. Without such a monitor, we are at best guessing, and in danger of flying blind. As we continue to seek to improve care and outcomes for patients with severe COVID-19, any tool that helps us better understand the impact of different medical interventions is most welcome.”

@Masimo || #Masimo

About Masimo

Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.1 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,2 improve CCHD screening in newborns,3 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.4-7 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,8 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.9 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris Gateway®, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView: 60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. Robba C, Ball L, Battaglini D, Cardim D, Moncalvo E, Brunetti I, Bassetti M, Giacobbe D, Vena A, Patroniti N, Rocco P, Matta B, Pelosi P. Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study. Crit Care (2021)25:111. DOI: https://doi.org/10.1186/s13054-021-03537-1.
  2. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  3. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  4. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  5. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  6. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  7. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  8. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  9. Estimate: Masimo data on file.
  10. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements

This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Root® with O3®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Root with O3, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC's website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today's date. We do not undertake any obligation to update, amend or clarify these statements or the "Risk Factors" contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Go to top

Masimo Logo

Study Investigates the Impact of Automating Respiration Rate Measurement Using Masimo Rad-G™ with RRp®

Neuchatel, Switzerland - March 22, 2021 – Masimo (NASDAQ: MASI) today announced the results of a prospective, observational study published in Acta Paediatrica in which researchers from the Hospital for Sick Children in Toronto evaluated the accuracy of plethysmographic respiration rate measurement (RRp®) using Masimo Rad-G™, a rugged, handheld device, on malnourished, hospitalized children in Nigeria.1

Masimo SET Pulse Oximetry

Masimo Rad-G™ with RRp®

Noting that in resource-limited environments, respiration rate (RR) measurement is often used to directly inform medical decisions for children with respiratory problems, but that manual RR counting "remains a challenge," Dr. Nancy Dale and colleagues investigated whether a technological solution might provide a useful alternative to manual counting. To make the evaluation, the researchers compared simultaneous device measurements and nurse-measured manual RR counts on malnourished children. The device chosen was the Masimo Rad-G, which uses a pulse oximetry sensor to measure both oxygen saturation and RRp, and which has been shown to provide good agreement between RRp and pediatrician-measured RR.2 They enrolled 514 children, aged 6 to 59 months, who were hospitalized between July 2019 and May 2020, in Borno State, Nigeria. Study nurses were trained to operate Rad-G and also perform manual RR counts as part of twice-daily patient assessment. RR was manually counted for 60 seconds while Rad-G simultaneously measured RRp via a sensor attached to the patient’s toe, and both measurements were recorded.

Analyzing the 6,889 paired RR measurements, the researchers found that the mean Rad-G RRp reading was 1.3 bpm (95% confidence interval 1.2 – 1.4 bpm) higher than the mean manual RR value. The mean absolute difference between the two methods was 4.4 bpm (95% CI 4.3 – 4.5 bpm). When RR was classified as either "normal" or "fast" breathing (using WHO pneumonia thresholds), the two methods resulted in the same classification 84% of the time. When RR was classified according to BedsidePEWS RR sub-scoring (a 4-point scale), 80% of the scores were the same, and 99.3% were within 1 point.

The researchers concluded that their findings "highlight the potential clinical impact of changing practice from manual to automated RR count. Clinical implementation of the device should be carefully monitored to measure impact on patient outcomes."

Study co-author Dr. Stanley Zlotkin commented, "Technical solutions to improve clinical care are laudable. We look forward to continuing this research."

RRp is one of multiple RR monitoring modalities offered by Masimo, which also include acoustic respiration rate (RRa®) and NomoLine® capnography (RRc™), helping clinicians ensure they have the most suitable tool for each patient scenario.

First developed in partnership with The Bill & Melinda Gates Foundation, Rad-G is a rugged, handheld device that provides clinically proven Masimo SET® pulse oximetry, respiration rate (RRp), and other important parameters. With its long-lasting rechargeable battery, robust rubber casing, and light weight, Rad-G makes it easier for clinicians to quickly assess patients and make informed care decisions anywhere pulse oximetry or vital signs checking is needed in a compact, portable form factor. Coupled with the universal Mini-Clip™ pulse oximeter sensor to provide the ultimate in handheld versatility, Rad-G can be used in a variety of settings, including limited-resource environments, both indoors and in the field.

In the U.S., RRp is 510(k) cleared for patients greater than two years old.

@MasimoInnovates || #Masimo

About Masimo
Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.3 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,4 improve CCHD screening in newborns,5 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.6-9 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,10 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.11 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris® Gateway, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView :60™, and Masimo SafetyNet™. Additional information about Masimo and its https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. Dale N, Parshuram C, Tomlinson G, Shepherd S, Ashir GM, Maryah LB, Zlotkin S. Performance of automated versus nurse-measured respiratory rate measurements in hospitalized malnourished children. Acta Paediatr 2021. DOI: https://doi.org/10.1111/apa.15781.
  2. Alwadhi V, Sarin E, Kuma P et al. Measuring accuracy of plethysmography based respiratory rate measurement using pulse oximeter at a tertiary hospital in India. Pneumonia 2020;12:4. DOI: https://doi.org/10.1186/s41479-020-00067-2.
  3. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  4. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  5. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  6. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  7. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  8. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  9. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  10. Estimate: Masimo data on file.
  11. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of RRp®, Rad-G™, and SET®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including RRp, Rad-G, and SET®, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact: Masimo
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

gototop image

Masimo Logo

Sri Lankan Study Expands Evidence Demonstrating the Benefits of Critical Congenital Heart Disease (CCHD) Screening Using Masimo SET® Pulse Oximetry

Neuchatel, Switzerland - March 22, 2021 – Masimo (NASDAQ: MASI) today announced the results of a prospective study published in the Sri Lanka Journal of Child Health in which researchers in Colombo, Sri Lanka evaluated the efficacy of a pulse oximetry-based critical congenital heart disease (CCHD) newborn screening strategy using Masimo SET® pulse oximetry.1 The authors concluded that pulse oximetry is a "simple, noninvasive, cost-effective, feasible, and reliable test," and found that it had higher CCHD screening sensitivity than physical exam. Combining the two methods led to detection of all cases of CCHD in the study cohort, and they recommended that, "Pulse oximetry screening as a combined strategy with newborn physical exam should be implemented as a basic routine at discharge for every newborn in maternity units island-wide." As they note, their work is the first published CCHD study of this nature in Sri Lanka.

Masimo SET Pulse Oximetry

Masimo SET® Pulse Oximetry

Noting that while "developed countries have abundant research on pulse oximetry screening" for CCHD, "there are few studies in developing countries," Dr. CR Gunaratne and colleagues sought to study the utility of such a screening strategy in their local setting. From November 2018 to April 2019, researchers assessed the rate of detection of CCHD using Masimo SET® pulse oximetry compared to routine physical exam alone in 5,435 asymptomatic newborns admitted to the post-natal wards at Castle Street Hospital, Colombo. Physical exam was performed at ≥ 24 hours of age "to identify any visible central cyanosis, weak/absent femoral pulses or cardiac murmur" by an experienced medical officer, blinded to pulse oximetry results. Radical-7® Pulse CO-Oximeters® with Masimo SET® pulse oximetry were used to measure pre-ductal and post-ductal oxygen saturation (SpO2) on the right hand and right foot, respectively, as part of a standardized screening algorithm. For newborns with positive results, an echocardiogram was performed within 48 hours to diagnose CCHD.

The researchers found that Masimo SET® pulse oximetry had a CCHD detection rate of 91%, compared to 82% for physical exam. The addition of Masimo SET® pulse oximetry to physical exam screening led to the detection of 2 cases missed by physical exam alone, with a combined detection rate of 100%. The positive predictive value and positive likelihood ratio were both higher for SET® pulse oximetry compared to physical exam (71.4% vs. 8.6% and 1232.7 vs. 46.2, p = 0.0001). The researchers also found that the false positive rate was "substantially" lower for SET® pulse oximetry compared to physical exam (0.07% vs. 1.76%, p = 0.0001).

The researchers concluded, "Prevalence of CCHD in our study was 2.02 per 1000 live births. Using a pulse oximetry strategy as an adjunct to routine physical exam can substantially reduce the diagnostic gap in CCHD as [a] combined approach has an additive effect resulting in more efficient screening."

Since its introduction in 1995, Masimo Measure-through Motion and Low Perfusion™ Signal Extraction Technology® (SET®) has been shown in more than 100 independent and objective studies to outperform other pulse oximetry technologies, providing clinicians with increased sensitivity and specificity to help them make critical patient care decisions.2 To date, nine other published CCHD screening studies, all with positive conclusions and representing over 300,000 infants, have used Masimo SET®,3-11 which includes the largest CCHD study to date, of 122,738 newborns.5 All of the CCHD studies with Masimo SET® pulse oximetry have shown improved screening sensitivity with the use of Masimo SET® alongside clinical assessment when compared to routine physical exam alone. Results from CCHD studies using other pulse oximetry technologies have shown that other technologies do not offer the same performance as Masimo SET® during CCHD screening.12-14

With its ability to accurately measure through motion and low perfusion, alongside its performance in outcome studies, SET® stands out as the choice of pulse oximetry technology for clinicians and policy makers hoping to implement newborn-related screening processes – and has indeed been used in the establishment of screening guidelines used around the world.15

@MasimoInnovates || #Masimo

About Masimo
Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.2 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,16 improve CCHD screening in newborns,3 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.17-20 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,21 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.22 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris® Gateway, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView :60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. Gunaratne CR, Hewage I, Fonseka A, Thennakoon S. Comparison of pulse oximetry screening versus routine clinical examination in detecting critical congenital heart disease in newborns. Sri Lanka J Child Health, 2021; 50(1): 04-11. DOI: http://dx.doi.org/10.4038/sljch.v50i1.9393.
  2. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  3. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  4. Slitine N, et al. Pulse Oximetry and Congenital Heart Disease Screening: Results of the First Pilot Study in Morocco. Int J Neonatal Screen 6(53). 30 June 2020.
  5. Zhao et al. Pulse oximetry with clinical assessment to screen for congenital heart disease in neonates in China: a prospective study. Lancet. 2014 Aug 30;384(9945):747-54.
  6. Ewer AK et al. Pulse Oximetry Screening for Congenital Heart Defects in Newborn Infants (Pulseox): A Test Accuracy Study. Lancet. 2011 Aug 27;378(9793):785-94.
  7. de-Wahl Granelli A et al. Noninvasive Peripheral Perfusion Index as a Possible Tool for Screening for Critical Left Heart Obstruction. Acta Paediatr 2007; 96(10): 1455-9.
  8. Meberg A et al. First Day of Life Pulse Oximetry Screening to Detect Congenital Heart Defects. J Pediatr 2008; 152:761-5.
  9. Schena F et al. Perfusion Index and Pulse Oximetry Screening for Congenital Heart Defects. J Pediatr. 2017 Apr;183:74-79.
  10. Hamilçıkan S, Can E. Critical Congenital Heart Disease Screening With a Pulse Oximetry in Neonates. J Perinat Med. 2018 Feb 23;46(2):203-207.
  11. Jawin V et al. Beyond Critical Congenital Heart Disease: Newborn Screening Using Pulse Oximetry for Neonatal Sepsis and Respiratory Diseases in a Middle-Income Country. PLoS One. 2015; 10(9): e0137580.
  12. Tekleab AM, Sewnet YC. Role of pulse oximetry in detecting critical congenital heart disease among newborns delivered at a high altitude setting in Ethiopia. Pediatric Health Med Ther. 2019;10:83-88. https://doi.org/10.2147/PHMT.S217987.
  13. Narayen IC et al. Accuracy of Pulse Oximetry Screening for Critical Congenital Heart Defects After Home Birth and Early Postnatal Discharge. J Pediatr. 2018;197:29-35.
  14. Oakley JL et al. Effectiveness of Pulse-Oximetry in Addition to Routine Neonatal Examination in Detection of Congenital Heart Disease in Asymptomatic Newborns. J Matern Fetal Neonatal Med. 2015;28(14):1736-9.
  15. Kemper et al. Strategies for implementing screening for critical congenital heart disease. Pediatrics. 2011 Nov;128(5):e1259-67. doi: 10.1542/peds.2011-1317.
  16. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  17. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  18. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  19. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  20. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  21. Estimate: Masimo data on file.
  22. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of SET®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including SET®, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact: Masimo
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

gototop image

Masimo Logo

New Study Evaluates the Ability of Masimo EMMA® Capnography to Assess the Respiratory Status of Children with Tracheostomy

Neuchatel, Switzerland - March 15, 2021 – Masimo (NASDAQ: MASI) today announced the findings of an observational, retrospective study published in Pediatrics International. In the study, researchers at the Osaka Women’s and Children’s Hospital in Japan found the Masimo EMMA® Portable Capnograph "useful for assessment of the respiratory condition in children with tracheostomy."1 EMMA provides seamless mainstream capnography for patients of all ages in a compact, easily portable device. The device requires no routine calibration and minimal warm-up time, with accurate end-tidal carbon dioxide (EtCO2) and respiration rate measurements and continuous EtCO2 waveforms displayed within 15 seconds.

Masimo EMMA Capnograph

Masimo EMMA® Capnograph

Noting the potential value of a compact and portable way to monitor changes in respiratory status for patients in scenarios where typical inpatient hospital monitoring equipment is less likely to be available, Dr. Masashi Hotta and colleagues sought to evaluate the utility of the EMMA capnograph on children with tracheostomy by comparing EtCO2 values from the EMMA device (which was connected to the distal side of the tracheostomy cannula) to invasively measured partial pressure of venous carbon dioxide (PvCO2). Although partial pressure of arterial carbon dioxide (PaCO2) is considered a gold standard for assessing respiratory condition, the researchers chose PvCO2 because "collection of arterial samples is more invasive than collection of venous samples" and noted that studies have shown a correlation between PaCO2 and PvCO2.2,3 They enrolled 9 infants (median age 8 months) and compared 43 paired EtCO2–PvCO2 readings in total.

The researchers found a correlation coefficient of 0.87 (95% confidence interval of 0.7 – 0.93; p < 0.001) between EtCO2 and PvCO2 readings. Analysis of the data revealed that EtCO2 readings were, on average, 10.0 mmHg lower than the corresponding paired PvCO2 value (95% limits of agreement of 1.0 – 19.1 mmHg). The researchers speculated that the tendency for EtCO2 to be lower than PvCO2 may be explained by "gas mixing proximal to the tracheostomy cannula due to the presence of anatomic and physiologic dead space. Because almost all patients used a cannula without a cuff, some air leakage may have occurred. In addition, about two-thirds of the patients had [chronic lung disease or bronchopulmonary dysplasia]," which they noted have been shown to cause lower CO2 concentrations during exhalation, relative to the partial pressure of CO2 in the blood.

They also found that the median difference in values was significantly greater for readings collected while patients were on mechanical ventilation (28 of the 43 data pairs). With a ventilator, there was a median 11.2 mmHg (6.8 – 14.3) difference; without a ventilator, there was a median 6.6 mmHg (4.1 – 9.0) difference (p = 0.043). The researchers noted that use of a ventilator was significantly related to the difference in paired readings because patients on ventilators had respiratory or circulatory disease.

Noting that "We demonstrated a strong positive relationship between PvCO2 and EtCO2 and revealed the availability and usefulness of this capnometer for children with tracheostomy," the researchers concluded, "EMMA is useful for assessment of the respiratory condition in children with tracheostomy. EMMA can be used especially in home-care settings and outpatient departments for such children." They also noted, "The main strength of this study is that we used a portable capnometer to evaluate EtCO2."

@MasimoInnovates || #Masimo

About Masimo
Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.4 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,5 improve CCHD screening in newborns,6 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.7-10 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,11 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.12 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris® Gateway, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView :60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. Hotta M, Hirata K, Nozaki M, Mochizuki N, Hirano S, and Wada K. Availability of portable capnometers in children with tracheostomy. Pediatrics Int’l. 2021. DOI:10.1111/PED.14516
  2. Fujimoto S, Suzuki M, Sakamoto K, et al. Comparison of End-Tidal, Arterial, Venous, and Transcutaneous PCO2. Respir Care. 2019;64(10):1208-14.
  3. Bloom BM, Grundlingh J, Bestwick JP, Harris T. The role of venous blood gas in the emergency department: a systematic review and meta-analysis. Eur J Emerg Med. 2014;21(2):81-8.
  4. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  5. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  6. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  7. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  8. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  9. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  10. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  11. Estimate: Masimo data on file.
  12. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of EMMA®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including EMMA, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact: Masimo
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

gototop image

Masimo Logo

Masimo Monitoring Solutions Promote Newborn and Maternal Safety

New Neonatal Study Adds to Body of Clinical Evidence Demonstrating Masimo SET® Pulse Oximetry's Unique Ability to Improve Care

Neuchatel, Switzerland - March 8, 2021 – Masimo (NASDAQ: MASI) provides a variety of innovative monitoring solutions designed to improve maternal and newborn safety during childbirth and the critical first minutes of life. Masimo SET® pulse oximetry's ability to measure during motion and low perfusion has helped newborns, neonates, and pediatric patients like no other pulse oximetry. Not only has Masimo SET® helped clinicians reduce retinopathy of prematurity (ROP)1 and improve screening for critical congenital heart disease (CCHD),2-10 but it has helped push the standard of care for babies to new heights – the evidence from CCHD studies with SET®, for example, has been used in the establishment of screening guidelines used around the world.11

Masimo Newborn Sensor

Masimo Newborn Sensor

Today, on International Women's Day, it is especially important to recognize that, as UNICEF reports, "newborns and mothers are still dying in appalling numbers." Every day, approximately 7,000 babies in the first month of life die, and approximately 810 women die, from preventable complications related to childbirth or pregnancy.12 Similarly, according to the WHO, "Although important progress has been made in the last two decades, about 295,000 women died during and following pregnancy and childbirth in 2017. The most common direct causes of maternal injury and death are excessive blood loss, infection, high blood pressure, unsafe abortion, and obstructed labor, as well as indirect causes such as anemia, malaria, and heart disease."13

Masimo's first and ongoing focus has been helping neonatologists, pediatricians, OB-GYNs, and midwives around the world provide the best care possible for newborns and their mothers. The Masimo Newborn Sensor, the first and still the only sensor of its kind, was introduced in 2004 and is designed to provide accurate arterial oxygen saturation (SpO2) and pulse rate (PR) measurements in the fastest time possible during hectic neonatal resuscitation scenarios. Alongside Newborn Sensors, Pathway™, introduced in 2019 for the Root® platform, helps clinicians visualize their preferred SpO2 and PR protocol during neonatal resuscitation. Eve™, a software application introduced in 2014, simplifies and automates the CCHD screening process, which Masimo SET® enabled. The Blue® Sensor, introduced in 2004, provides accurate monitoring in cyanotic children at low SpO2 levels to help clinicians care for them and was validated specifically on infants with cyanotic disease.14 rainbow® SpHb®, noninvasive hemoglobin monitoring, introduced in 2008, can measure hemoglobin levels during pregnancy and alert clinicians to the possibility of excessive blood loss during delivery.

Adding to the significant body of clinical evidence demonstrating the utility of SET® pulse oximetry and other Masimo newborn and maternal solutions, a new study published in the Journal of Clinical Neonatology investigated the use of comparing Masimo perfusion index (Pi) pre- and post-ductal values on pre-term infants to aid clinicians in diagnosing hemodynamically significant patent ductus arteriosus (hsPDA).15 Dr. Melek Büyükeren and colleagues at Hacettepe University in Ankara, Turkey found that the difference in right-hand and right-leg Pi values obtained using Masimo SET® pulse oximetry was significantly higher in pre-term infants with hsPDA, leading them to conclude that the difference in Pi "has diagnostic value in hsPDA and can assist diagnosis when echocardiography is not available."

Marcelo Cardetti, MD, said, "As Head of the Neonatology Service of the Clinic and Maternity of the Center for Endocrinology and Human Reproduction (CERHU) in San Luis, Argentina, we have been using Masimo pulse oximetry monitors with SET® for approximately 8 years in all high-risk newborns and also for newborn resuscitation. In addition, we use Masimo SET® monitors for the detection of CHD and hypoxemia in all newborns in the mother-infant unit. Furthermore, our neonatal department is engaged in a research protocol on regional cerebral oxygenation (O3®) with neonatal sensors for Masimo Root- to know what happens with cerebral oxygenation during routine clinical procedures in the NICU. This monitoring, in addition to SpO2 and perfusion index (Pi), perfectly shows us what is happening with oxygenation of seriously ill newborns in real-time and in a noninvasive way. Masimo SET®'s innovative technology far overcomes the limitations of conventional oximetry and the Pi is an important clinical tool in the care of sick neonates. This monitor and the special neonatal RD sensors have been of great value for the prevention of ROP and for successful and quick, accurate, and reliable steps needed in resuscitation in the delivery room."

Hernando Baquero, MD, commented, "I am a pediatrician, neonatologist, clinician, educator and researcher in a major university in Colombia, with several publications on noninvasive neonatal SpO2 monitoring and oxygenation. The introduction in the Latin American market of Masimo SET® technology dramatically improved neonatal care in our countries. In contexts with serious resource limitations, as is the case in most neonatal units in our countries, it was vital to be able to provide quality care to the most vulnerable population due to their health conditions (e.g. hypoperfusion) or their biological characteristics (e.g. prematurity). Having reliable, fast, and stable readings as provided by SET® and its neonatal sensors improved the chances of many of our newborns."

Anne de-Wahl Granelli, PhD, Biomedical Scientist, RDCS(PE), Medical Centre Manager, Sweden, said, "The integration of pulse oximetry into the CCHD screening process has made a significant impact on the detection of congenital heart disease and neonatal health. In clinical studies, the use of pulse oximetry screening with SET® technology significantly improved the detection of duct dependent heart disease before hospital discharge. In 2011, the U.S. Department of Health and Human Services added pulse oximetry screening of newborns for CCHD to the Recommended Uniform Screening Panel. Today pulse oximetry has become a global standard of care when screening newborns for CHD."

Sergio Golombek, MD, MPH, FAAP, Member of the Board and Past President of the Ibero-American Society of Neonatology (SIBEN), said, "I have authored and published several scientific studies in relation to newborn oxygenation and screening for CCHD. Masimo SET® and new innovations and sensor development like RD sensors for noninvasive monitoring represent excellent technology that we can trust, that work promptly and accurately when we need it the most, and are designed specifically with ill newborn babies in the NICU in mind. SET® technology allows us also to do the pulse oximetry test or CCHD screening on newborn babies in our units, knowing well that we can fully trust the results. The technology is very easy to use and understand, and makes us deliver better clinical care."

Katsuyuki Miyasaka, MD, PhD, Executive Advisor, Wayo Women's University Graduate School, Tokyo and Professor Emeritus, St. Luke's International University, Tokyo, said, "As a critical care pediatric anesthesiologist, reliable and accurate pulse oximetry is paramount to optimal patient outcomes. Some suggest pulse oximetry is the fifth vital sign. Clinicians can rely on the sensitivity and specificity provided by Masimo's measure-through-motion technology in the management of children in the PICU. The use of pulse oximetry can lead to fewer adverse events in the recovery room by capturing accurate readings even during movement such as shivering in critically ill or unstable patients."

Mark Ansermino, MBBCh, MMed, Director of the Center for International Child Health and Professor, Department of Anesthesiology, Pharmacology & Therapeutics at the University of British Columbia, Canada, said, "Anemia is a significant public health problem that especially affects the quality of life, health status, and survival of mothers and children around the world. Having access to continuous hemoglobin monitoring technology can help provide visibility to hemoglobin levels. The noninvasive nature of the SpHb solution makes it comfortable for the mother and child and makes monitoring during childbirth feasible even in low-resource settings."

Asrat Dibaba Tolossa, MD, MPH, is Chief of Party for the Global Affairs Canada ENRICH (Enhancing Nutrition Services to Improve Maternal and Child Health) Program, a multi-year, multi-country initiative designed to improve the health and nutrition of mothers, newborns, and children. As part of the program, ENRICH has been conducting a study in central Tanzania, where maternal and child care services are often overburdened, using the Masimo Rad-67® Pulse CO-Oximeter®, which provides spot-check SpHb measurements. Dr. Tolossa commented, "In our field experimentation with the Rad-67, we found out that the device can be used easily by lower-level health workers in the communities for screening and referral of patients to health facilities for further assessment and treatment. There was also a high acceptance rate by community members as the method is noninvasive."

Joe Kiani, Founder and CEO of Masimo, said, "From our inception, we have been committed to improving outcomes for the youngest and most fragile patients. Our foundational SET® pulse oximetry was designed with newborns in mind. With rainbow® Pulse CO-Oximetry, we have made the noninvasive monitoring of child and mother clinically more meaningful. While we stand behind the fact that we have the best pulse oximetry for all patients, especially the most fragile patients, we continue to seek new ways to help clinicians provide newborns and their mothers with the best care possible. On this International Women's Day, we thank the caregivers who have dedicated themselves to the health of newborns and their mothers, as well as women everywhere, for their achievements, their sacrifices, and for nurturing us all."

SpHb is not intended to replace laboratory blood testing. Clinical decisions regarding red blood cell transfusions should be based on the clinician’s judgment considering, among other factors, patient condition, continuous SpHb monitoring, and laboratory diagnostic tests using blood samples.

Noninvasive, continuous SpHb has CE clearance for all patients and in the U.S. has received FDA clearance for patients >3 kg but is not currently indicated for patients <3 kg. As part of its U.S. FDA 510(k) clearance, spot-check SpHb on Rad-67 is contraindicated for use on pregnant patients and not indicated for use on pediatric patients or patients with renal disease. Eve has not obtained FDA clearance and is not available in the United States.

@MasimoInnovates || #Masimo

*ARMS accuracy is a statistical calculation of the difference between device measurements and reference measurements. Approximately two-thirds of the device measurements fell within +/- ARMS of the reference measurements in a controlled study.

About Masimo
Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.16 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,1 improve CCHD screening in newborns,4 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.17-20 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,21 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.22 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris® Gateway, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView :60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  2. Slitine N, et al. Pulse Oximetry and Congenital Heart Disease Screening: Results of the First Pilot Study in Morocco. Int J Neonatal Screen 6(53). 30 June 2020.
  3. Zhao et al. Pulse oximetry with clinical assessment to screen for congenital heart disease in neonates in China: a prospective study. Lancet. 2014 Aug 30;384(9945):747-54.
  4. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  5. Ewer AK et al. Pulse Oximetry Screening for Congenital Heart Defects in Newborn Infants (Pulseox): A Test Accuracy Study. Lancet. 2011 Aug 27;378(9793):785-94.
  6. de-Wahl Granelli A et al. Noninvasive Peripheral Perfusion Index as a Possible Tool for Screening for Critical Left Heart Obstruction. Acta Paediatr 2007; 96(10): 1455-9.
  7. Meberg A et al. First Day of Life Pulse Oximetry Screening to Detect Congenital Heart Defects. J Pediatr 2008; 152:761-5.
  8. Schena F et al. Perfusion Index and Pulse Oximetry Screening for Congenital Heart Defects. J Pediatr. 2017 Apr;183:74-79.
  9. Hamilçıkan S, Can E. Critical Congenital Heart Disease Screening With a Pulse Oximetry in Neonates. J Perinat Med. 2018 Feb 23;46(2):203-207.
  10. Jawin V et al. Beyond Critical Congenital Heart Disease: Newborn Screening Using Pulse Oximetry for Neonatal Sepsis and Respiratory Diseases in a Middle-Income Country. PLoS One. 2015; 10(9): e0137580.
  11. Kemper et al. Strategies for implementing screening for critical congenital heart disease. Pediatrics. 2011 Nov;128(5):e1259-67. doi: 10.1542/peds.2011-1317.
  12. https://www.unicef.org/health/maternal-and-newborn-health
  13. https://www.who.int/health-topics/maternal-health#tab=tab_1
  14. Harris B et al. Ped Crit Care Med. 2016 Apr;17(4):315-20.
  15. Büyükeren M, Yiğit S, Aykan HH, Karagöz T, Çelik HT, Yurdakök M. Comparison of perfusion index and echocardiographic parameters in preterm infants with hemodynamically significant patent ductus arteriosus. J Clin Neonatol 2021;10:11-8.
  16. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  17. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  18. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  19. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  20. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  21. Estimate: Masimo data on file.
  22. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of SET®, Newborn Sensors, Pathway™, Eve™, Blue®, rainbow®, and SpHb®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including SET®, Newborn Sensors, Pathway, Eve, Blue, rainbow®, and SpHb, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact: Masimo
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

gototop image

Masimo Logo

Masimo Announces CE Marking of the Rad-G™ with Temperature

Neuchatel, Switzerland - March 2, 2021 – Masimo (NASDAQ: MASI) today announced the CE marking of the Rad-G™ with Temperature, a rugged handheld device that provides clinically proven SET® pulse oximetry, respiration rate from the pleth (RRp®), and other important parameters alongside clinical-grade, non-contact infrared thermometry. With its long-lasting rechargeable battery, robust rubber casing, light weight, and integrated noninvasive, real-time forehead temperature measurement, Rad-G with Temperature makes it easier for clinicians to quickly assess patients and make informed care decisions anywhere pulse oximetry or vital signs checking is needed in a compact, portable form factor. Coupled with the universal Mini-Clip™ pulse oximeter sensor to provide the ultimate in handheld versatility, Rad-G with Temperature can be used in a variety of settings, including but not limited to entry screening, physicians' offices, outpatient services, long-term care facilities, wellness clinics, first-response scenarios, and limited-resource environments both indoors and in the field. Rad-G can provide both spot-check measurement and continuous monitoring.

Masimo Rad-G™ with Temperature

Masimo Rad-G™ with Temperature

The infrared thermometry offered by Rad-G with Temperature provides a host of benefits. Rad-G's thermometer is non-contact and does not require probe covers or other disposable accessories. Its integration into the Rad-G platform eliminates the need for clinicians to locate a separate clinical thermometer to take body temperature measurements and ensures that many people can be seamlessly and efficiently screened for temperature, with one-touch operation, alongside oxygen saturation, respiration rate, and more, in the same session, using a single device. Designed from the start to maximize portability and battery life, Rad-G's rechargeable battery provides an impressive 24 hours of continuous use between charges – allowing clinicians to work in transport, emergency, and other challenging scenarios with confidence that the device will continue to function hour after hour.

First developed in partnership with The Bill & Melinda Gates Foundation as a spot-check device for use in pneumonia screening, the Rad-G with Temperature expands on its predecessor's capabilities not only with the ability to measure temperature, but the addition of alarms, and thus the ability to provide both continuous monitoring and spot-check measurement – without sacrificing any portability, convenience, or ruggedness. Using the included power adapter, Rad-G can be easily converted from a handheld, spot-check device into a continuous monitoring device, in the absence of other multi-parameter monitors. As of 2010 – twenty years after use of pulse oximetry during surgery became routine in affluent countries – more than 77,000 operating theaters in low- and middle-income countries were still conducting surgery without pulse oximetry.1 Working with a myriad of non-profit organizations, Rad-G is being made available at an affordable price so that the five billion people who don't have access to reliable pulse oximetry can finally have it. When used for continuous monitoring, the high-resolution screen displays a continuous pleth waveform and the fully configurable, audible alarms help alert clinicians to changes in patient status that may require their intervention.

The development of Rad-G stems in part from the findings of a multi-center, prospective, two-stage observation study funded by The Bill & Melinda Gates Foundation, whose protocols were published in JMIR Research Protocols, in which Dr. Kevin Baker, MA, MSc, Senior Research Specialist at the Malaria Consortium, and colleagues sought to identify the most accurate, usable, and acceptable devices to aid community health workers in the diagnosis of pneumonia symptoms in resource-poor settings.2 The researchers found that "The Masimo mobile phone pulse oximeter [iSpO2® Rx] had the best overall performance across all measures and in both age strata of the children the device was tested on. This may be due to the motion signal processing techniques incorporated in Masimo pulse oximeters which attempts to reduce motion artefact, which may be particularly important when using these devices on moving children."3

Paul Farmer, Kolokotrones University Professor at Harvard, Chair of the Department of Global Health and Social Medicine at Harvard Medical School, Chief of the Division of Global Health Equity at Brigham and Women's Hospital in Boston, and Co-Founder and Chief Strategist of Partners in Health, said, "In the places where I've worked around the world, there has always been a demand for tools that enable the continuous monitoring of key vital signs, like respiration rate, oxygen saturation, and temperature, which can help providers and patients fight against illnesses from pneumonia to congenital heart disease."

Eric D. McCollum, MD, MPH, Director of the Global Program in Respiratory Sciences at the Johns Hopkins School of Medicine in Baltimore, Maryland, said, "The Masimo Rad-G is a fantastic device that is thoughtfully crafted and user-friendly for both healthcare workers with diverse training backgrounds and pediatric patients across the age spectrum. We are using the Rad-G currently in four countries in our pediatric global health work and the device is no doubt at the high standards set by Masimo with its range of high-quality pulse oximeters. The healthcare providers and children love it."

"Bacterial and viral pneumonias – including those caused by COVID-19 – are a leading cause of death in children and adults globally, with a disproportionate burden of disease in low-resource settings," said Peter Moschovis, MD, MPH, a pulmonologist at Massachusetts General Hospital. "Pulse oximetry plays an important role in the triage and management of patients with pneumonia."

Joe Kiani, Founder and CEO of Masimo, said, "With Rad-G, we set out to create an accessible, high-quality care solution that clinicians can rely on in a multitude of care settings to serve the five billion people on our planet that to date have not had access to pulse oximetry, let alone SET® pulse oximetry. With the addition of temperature measurement, Rad-G is more versatile than ever, streamlining the assessment of multiple key vital signs. Many caregivers travel miles, sometimes on bike, sometimes on foot, to help patients, so having a product that is light, small, multifunctional, and 'accurate when you need it most' is crucial. Rad-G was designed to be just that."

SpO2 and PR monitoring on Rad-G is provided using clinically proven Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, which has been shown in over 100 independent and objective studies to outperform other technologies.4 SET® is estimated to be used on more than 200 million patients a year5 and is the primary pulse oximetry at 9 of the 10 hospitals that top the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.6 With Masimo SET® technology in Rad-G, clinicians have access to accurate pulse oximetry measurements in the palm of the hand.

In a new cross-sectional study published in Acta Paediatrica, Dr. Baker and colleagues assessed the utility of Rad-G by observing how it was used by healthcare workers screening children under five for pneumonia in three regions of Ethiopia in 2018.7 The researchers found that healthcare workers gave correct treatment and referral guidance using Rad-G's results and their assessment of other symptoms in 94.9% and 95.8% of cases in the first and second of their two observation groups, respectively.

In addition to temperature measurements and Masimo SET® oxygen saturation (SpO2), pulse rate (PR), perfusion index (Pi), and PVi® (for assessing fluid responsiveness), the same SpO2 sensor can be used to monitor respiration rate from the plethysmograph, with RRp. Difficulty breathing and fever are generally considered two of the earliest signs of patient deterioration, and Masimo hopes that the availability of RRp and thermometry on Rad-G may play a role in assisting clinicians and public health officials as they seek to combat numerous types of illnesses, including pneumonia and COVID-19.

Rad-G with Temperature can be used with a variety of reusable and single-patient use sensors. The universal direct-connect Rad-G reusable sensor, indicated for monitoring adult, pediatric, and infant patients, helps to eliminate the need to stock and carry multiple sensor types, increasing the device’s versatility and ease of use, especially in more challenging field environments. Rad-G with Temperature is also compatible with the vast portfolio of Masimo single-patient-use adhesive sensors – including Masimo RD SET® sensors, which offer best-in-class accuracy specifications of 1.5% in conditions of motion and no motion – ensuring clinicians can customize their setup based on the unique needs of each care setting. In addition, Rad-G is designed to work reliably on all people, from white to black, neonate to geriatric.

Rad-G is FDA 510(k) cleared and is available in the U.S. Rad-G with Temperature has not received FDA 510(k) clearance and is not currently available in the U.S. PVi is FDA 510(k) cleared as an indicator of fluid responsiveness in select populations of mechanically ventilated adult patients in the U.S.

@MasimoInnovates || #Masimo

About Masimo
Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.4 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,8 improve CCHD screening in newborns,9 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.10-13 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,5 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.6 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris® Gateway, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView :60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. https://www.theatlantic.com/health/archive/2017/02/pulse-oximeter/516510/
  2. Baker K, Akasiima M, Wharton-Smith A, Habte T, Matata L, Nanyumba N, Okwir M, Sebsibe A, Marasciulo M, Petzold M, Källander K. “Performance, Acceptability, and Usability of Respiratory Rate Timers and Pulse Oximeters When Used by Frontline Health Workers to Detect Symptoms of Pneumonia in Sub-Saharan Africa and Southeast Asia: Protocol for a Two-Phase Multisite, Mixed-Methods Trial.” JMIR Res Protoc. 2018;7(10):e10191) doi: 10.2196/10191.
  3. https://openarchive.ki.se/xmlui/bitstream/handle/10616/46833/Thesis_Kevin_Baker.pdf?sequence=4&isAllowed=y
  4. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  5. Estimate: Masimo data on file.
  6. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview
  7. Baker K, Ward C, Maurel A, de Cola M, Smith H, Getachew D, Habte T, McWhorter C, LaBarre P, Karlstrom J, Ameha A, Tariku A, Black J, Bassat Q, Kallander K. “Usability and acceptability of a multimodal respiratory rate and pulse oximeter device in case management of children with symptoms of pneumonia: A cross-sectional study in Ethiopia.” Acta Paediatrica. 19 Nov 2020. DOI: 10.1111/apa.15682
  8. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  9. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  10. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  11. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  12. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  13. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.

Forward-Looking Statements
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo Rad-G™, SET®, RRp®, and iSpO2® Rx. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo Rad-G, SET®, RRp, and iSpO2 Rx, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact: Masimo
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

gototop image

Masimo Logo

Masimo Announces U.S. Release of softFlow® High-Flow Nasal Cannula Therapy

Innovative Nasal High-Flow Therapy Provides Respiratory Support for Patients with COVID-19 and Other Respiratory Conditions

Irvine, California , California - February 23, 2021 – Masimo (NASDAQ: MASI) today announced the U.S. introduction of softFlow®, innovative pulmonary care therapy which provides nasal high-flow warmed and humidified respiratory gases to spontaneously breathing patients. The technology, available on the softFlow 50, offers adult patients high-flow respiratory support through a soft nasal cannula by generating a consistent high flow of warm, humidified air or air/oxygen mixture.

Masimo softFlow

Masimo softFlow®

As the COVID-19 pandemic continues, increasing the number of patients suffering from respiratory conditions and requiring respiratory support, softFlow offers clinicians across the continuum of care an important tool to help in the treatment of spontaneously breathing patients. Capable of operating without an external compressed air supply, softFlow is designed for maximum versatility, with utility in settings throughout the hospital, long term-care facilities, and use at home. To reduce the risk of cross-contamination, softFlow uses a single-patient-use flow path from the internal mixing chamber to the patient and a bacterial/viral filter designed to filter contaminants from the air delivered to the patient.

The U.S. National Institutes of Health (NIH) and World Health Organization (WHO) have both suggested that the use of High-Flow Nasal Cannula (HFNC) therapy, like softFlow, is a viable option for providing respiratory support for select COVID-19 patients for whom conventional oxygen therapy may be insufficient.1 softFlow can provide patients suffering from COVID-19 or other respiratory conditions with higher flow rates of oxygen than conventional oxygen therapies. As a therapy, NIH concluded, "HFNC is preferred over Noninvasive Positive Pressure Ventilation (NIPPV) in patients with acute hypoxemic respiratory failure based on data from an unblinded clinical trial in patients without COVID-19 who had acute hypoxemic respiratory failure."2 The referenced study found a higher number of ventilator-free days (24 days) with HFNC than with conventional oxygen therapy (22 days) or NIPPV (19 days) (p=0.02). The researchers also found a lower 90-day mortality rate compared to conventional oxygen therapy or NIPPV.3

With softFlow, the airflow is consistently delivered through the nose, allowing patients to continue to eat, drink, and speak, which is difficult with mask-based forms of respiratory support. In addition, the softFlow 50 system provides warm, humidified gas into the patient's nose, to enhance comfort and aid in mucous clearance.4,5 With its ability to precisely deliver high respiratory gas flow rates well above those required for typical respiratory demand, clinicians can also take advantage of the high-flow rate to help limit the entrainment of room air (which can reduce the quantity of delivered inhaled oxygen).

The innovative integrated airflow generator of the softFlow technology and water reservoir attachment allow for continued HFNC treatment of recovering COVID-19 patients in the home and other care settings, without the need for a separate source for high-flow air like other devices. The device's simple, intuitive interface allows patients or their caregivers (who can lock settings) to easily customize the flow rate and humidification level.

First available in 2016, softFlow is now in use in numerous countries in Africa, Asia, and Europe.

Beijing Aerospace Changfeng Co., LTD, of China, noted, "We are very satisfied with the therapy successes we achieve with this device. We would like to emphasize the stable flow during inhalation and exhalation, which is generated by the powerful motor, which doesn’t need an external air source, as well as the resulting CO2 washing out. This fact opens up possibilities for [use as] a therapy for hypercapnic patients. Another very positive aspect of the device is the way it prevents condensation in the applicator by warming the entire tube system up to the nasal cannula. … All in all we are very satisfied with the handling of the device and the medical results."

Miguel Marina Barrio, Product Manager, Intensive Care Division, Hospital Hispania, Spain, added, "We already ordered 50 devices and we are very satisfied with the way softFlow performed. … In our opinion, the following points are very good: menu structure, product features, design, usability, manuals, delivery times. … The product quality, customer service, and type of packaging are particularly excellent."

Dr. Dalal Al Matrouk, Head of Anesthesia and ICU at Farwaniya Hospital, Ministry of Health, Kuwait, said, "We have deployed 10 units of Masimo softFlow to help our clinicians manage patients with COVID-19-induced respiratory problems. We realize that high-flow nasal therapy could potentially help avoid invasive mechanical ventilation and its associated risks of ventilator-induced lung injury and hospital-acquired pneumonia."

Joe Kiani, Founder and CEO of Masimo, said, "We believe softFlow provides clinicians with an important tool to help address the growing number of people with compromised respiratory function, whether in high-acuity or low-acuity settings, including at home. We're happy to now be able to offer this technology in the United States."

@MasimoInnovates || #Masimo

The softFlow 50 is FDA cleared for use in hospital and long-term care facilities. Home use is being made available in the US under the FDA Enforcement Policy for Ventilators and Accessories and Other Respiratory Devices During the COVID-19 Public Health Emergency.

About Masimo
Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.6 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,7 improve CCHD screening in newborns,8 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.9-12 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,13 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.14 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris® Gateway, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView :60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf
  2. https://www.covid19treatmentguidelines.nih.gov/critical-care/oxygenation-and-ventilation/
  3. Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185-2196. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25981908.
  4. Hasani A et al. Chron Respir Dis 5, no. 2 (2008): 81-86.
  5. Roca O et al. Respir Care 55, no. 4 (2010): 408-413.
  6. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  7. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  8. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  9. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  10. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  11. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  12. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  13. Estimate: Masimo data on file.
  14. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements: Masimo
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo softFlow®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo softFlow, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact: Masimo
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

gototop image

Masimo Logo

Masimo Announces Full Market Release of Masimo SafetyNet-OPEN™

Easy-to-Implement Solution Helps Businesses, Schools, and Other Organizations Reopen Responsibly and Stay Open Safely During Infectious Illnesses

Irvine, California , California - February 15, 2021 – Masimo (NASDAQ: MASI) today announced the full market release of Masimo SafetyNet-OPEN™, a web and mobile app solution that helps businesses, schools, and other organizations screen, trace, and manage users as they face COVID-19 and other infectious illnesses, such as seasonal flu. SafetyNet-OPEN not only helps organizations bring their people back to the workplace responsibly, but stay open safely. Tailored for each organization’s safety protocols and needs, SafetyNet-OPEN is capable of covering all stages of back-to-work management, including risk screening, exposure contact tracing, and recovery management.

Masimo SafetyNet-OPEN™

Masimo SafetyNet-OPEN™

As a global leader in noninvasive patient monitoring technologies and advanced connectivity and automation solutions, Masimo is uniquely positioned to provide organizations with the tools to assist them in staying open safely. Trusted by leading hospitals to monitor more than 200 million patients each year,1 Masimo, in the first phase of the COVID-19 pandemic, developed the Masimo SafetyNet™ remote patient management solution, now in use at hospitals around the world, to help keep patients and frontline workers safe. SafetyNet-OPEN builds on SafetyNet by scaling this patient management to the level of entire organizations, no matter the size. When escalation of care is needed, SafetyNet-OPEN can even integrate clinical monitoring using Masimo SafetyNet, in partnership with the organization's health care provider or local hospital.

Masimo SafetyNet-OPEN helps organizations identify those who are most at risk of COVID-19 or other infectious viruses, trace possible exposure to limit the spread of the virus, and monitor users' vital signs, including temperature, to help detect the onset of fever, and arterial oxygen saturation, for signs of dangerous deterioration. Based on answers to daily questions and physiological data from connected monitoring devices, users receive a personalized daily risk score, automating directives to stay home, get tested, or seek treatment, configured according to each organization’s safety protocols, back-to-work procedures, and changing local health authority guidelines.

Flexible and versatile, the Masimo SafetyNet-OPEN system can be augmented with additional components to offer more advanced management of the organization's users. To help screen potentially infected users, results from on-site testing, implemented in coordination with a trusted lab partner, can be securely stored and taken into account in risk scoring and assessment. To improve contact tracing, SafetyNet-OPEN can be customized with proximity wristbands or with the Radius T°™ wearable continuous thermometer for both temperature measurement and proximity analysis, to help track users' exposure to those who may be at risk, including time spent in close contact. And when care escalation may be needed, the organization, in collaboration with a trusted clinical partner, can easily incorporate vital signs data into SafetyNet-OPEN, to monitor impacted users as their risk level rises or during recovery from COVID-19, flu, or another illness. Data can be collected from the Radius T° continuous thermometer (to help track fever), the Radius PPG™ wearable continuous pulse oximeter, and other monitoring devices.

For businesses, schools, and organizations both large and small, Masimo SafetyNet-OPEN is easy and fast to implement, with no desktop software to install and with a dedicated Masimo support team to ensure seamless rollout. A web-based workforce management dashboard provides a clear picture of every team member's status – who's at risk, who's recovering, who's cleared to work, proximity violations, etc. – helping organizations efficiently and safely manage their teams during COVID-19 and beyond. Every aspect, from the daily risk-assessment questions, to the rules of the algorithm that determines risk scores, to group assignments for contact tracing, and more, can be easily customized. Furthermore, SafetyNet-OPEN is designed to ensure user data is secure.

Dr. Richard Carmona, MD, MPH, 17th Surgeon General of the United States and Distinguished Professor of Public Health at the University of Arizona Mel and Enid Zuckerman College of Public Health, said, "One of Masimo SafetyNet-OPEN's greatest strengths is its great versatility and customizability, which gives it enormous potential to provide utility in so many settings. As a former Surgeon General I can see tremendous application across a number of federal agencies whose day-to-day operation and 24/7 capability we all depend upon. At the University of Arizona, where I lead the effort to safely reopen our campuses, we've been involved in numerous initiatives examining how COVID-19 affects social groups – for example, the effects of asymptomatic carriers, and how to prevent 'superspreader' events. SafetyNet-OPEN's risk assessment and mitigation tools, which can be fine-tuned to accommodate our evolving understanding of the disease, are ideal for better understanding and coping with such a complex challenge."

Claremont McKenna College President Hiram E. Chodosh, JD, said, "We are grateful to Masimo for the pilot use of its SafetyNet-OPEN tools, which we believe provide yet another important way for us to strengthen the health and safety capabilities of our college campus and the broader community."

Dr. Mark Ferris, MSc, MRCGP, MFOM, Occupational Physician, UK, commented, "Over the last year, we have gained considerable knowledge about COVID-19 and how best to control it. It is clear that to protect our colleagues or students, their families, our workplaces, and the wider community, we need to combine as many strategies as possible. These include the provision of accurate information, physical distancing, masks, ventilation, hygiene precautions, testing and monitoring, contact tracing, and supported isolation. The Masimo SafetyNet-OPEN solution offers a vital way to help organizations apply this combined strategy."

Filmmaker Mark Kassen, Co-Founder and Executive Chairman of Like Minded Media Ventures, added, "We are all anxious to get back to work but without Masimo SafetyNet-OPEN, which we used during its limited market release, we never would have felt safe and secure enough to ask our cast and crew to come back to set."

Dr. Oscar San Román Orozco, MD, COVID-19 Clinic, University Health System, Universidad Autonoma de Queretaro, Mexico, explained, "Public Health interventions never work in silos, because pandemics don’t just affect one sector. To overcome the challenges that COVID-19 has given us, we need a robust systematic approach that involves intersectoral, evidence-based interventions and technology. Masimo SafetyNet-OPEN provides employers and university leaders with the necessary tools to make their communities feel safe through an organized, controlled, and monitored strategy. We might not eradicate the disease soon, but we can control it by segmenting work and social groups based on their risk, monitoring these social bubbles using a robust screening and contact tracing method, and trusting in new intersectoral approaches and technologies. These will allow us to delimit the viral propagation and maintain tight control in case any individual gets infected."

Joe Kiani, Founder and CEO of Masimo, said, "As the COVID-19 pandemic continues, organizations around the world are struggling with the immense challenge of balancing the health and safety of employees, students, and members with the economic and educational needs of their communities. Masimo has developed numerous technologies to help patients and clinicians stay safe during the pandemic. With SafetyNet-OPEN, we've combined our decades of expertise in patient monitoring with our latest innovations in automation and connectivity to help organizations confront this challenge and better manage future ones."

@MasimoInnovates || #Masimo

About Masimo
Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.2 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,3 improve CCHD screening in newborns,4 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.5-8 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,1 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.9 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris Gateway®, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView: 60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. Estimate: Masimo data on file.
  2. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  3. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  4. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  5. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  6. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  7. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  8. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  9. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements: Masimo
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo SafetyNet-OPEN™, Radius T°™, and Radius PPG™. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo SafetyNet-OPEN, Radius T°, and Radius PPG, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact: Masimo
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

gototop image

Masimo Logo

Masimo Expands Suite of Advanced Measurements Through Acquisition of UK-Based LiDCO Group Plc

Leading Provider of Hemodynamic Monitoring Becomes Masimo Subsidiary

Irvine, California , California - February 2, 2021 – Masimo (NASDAQ: MASI) today announced that it has successfully completed the acquisition of the LiDCO Group Plc, a leading provider of advanced hemodynamic monitoring solutions (LiDCO). The Company completed the acquisition of 100% of LiDCO on February 2, 2021.

LiDCO was founded in 1991, launched its first product in 1999, and began trading on the AIM submarket of the London Stock Exchange in 2001. On January 11, 2021, LiDCO was de-listed from AIM and will be re-registered by Masimo as a UK-based private subsidiary.

@MasimoInnovates || #Masimo

About Masimo
Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.1 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates3 improve CCHD screening in newborns,2 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs4-7 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,8 and is the primary pulse oximetry at 9 of the top 10 hospitals according to the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.9 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient’s physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo’s family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris Gateway®, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView: 60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References
1. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
2. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
3. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
4. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
5. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
6. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
7. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
8. Estimate: Masimo data on file.
9. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview.

About LiDCO
LiDCO is a supplier of noninvasive and minimally invasive hemodynamic equipment used to monitor the amount of blood flowing around the body and ensure that vital organs are adequately oxygenated. Clinical studies show that optimizing the hemodynamic status of high-risk patients produces better outcomes and reduced hospital stay. Since launching our first product in 1999, LiDCO has been committed to improving patient outcomes whilst providing excellent customer service. Dedicated to making a difference.

Forward-Looking Statements: Masimo
This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, those related to Masimo’s proposed acquisition of the Connected Care Business from NantHealth (the "Acquisition"), and are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to achieving the conditions to closing the Acquisition and risks regarding the integration of assets acquired from NantHealth; risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo’s unique noninvasive measurement technologies contribute to positive clinical outcomes and patient safety; as well as other factors discussed in the “Risk Factors” section of our most recent reports filed with the Securities and Exchange Commission (“SEC”), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact: Masimo
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Masimo, SET, Signal Extraction Technology, Improving Patient Outcome and Reducing Cost of Care by Taking Noninvasive Monitoring to New Sites and Applications, rainbow, SpHb, SpOC, SpCO, SpMet, PVI are trademarks or registered trademarks of Masimo.

gototop image

Masimo Announces the iSirona™ Connectivity Hub

Irvine, California – January 19, 2021 – Masimo (NASDAQ: MASI) today announced the global launch of iSirona™, a compact, versatile connectivity hub designed to maximize interoperability across the continuum of care. The iSirona hub offers an efficient way to physically connect up to six medical devices at the bedside and automatically route the data to the Masimo Hospital Automation™ platform, a vendor-agnostic connectivity solution for EMR integration, surveillance monitoring, alarm management, mobile notifications, smart displays, and analytics. Supplemented by iSirona, Masimo Root® – a powerful, versatile, multimodal patient monitoring and connectivity solution combining numerous advanced measurements with sophisticated expansion capabilities – helps ensure that whatever the source, all patient data can be accurately and efficiently captured and presented to clinicians in the most suitable ways.

patient hand equiped with ORi next to Masimo Root Device

Masimo iSirona™ and the Hospital Automation™ Platform

iSirona, Root, and the Hospital Automation platform are already compatible with an ever growing list of more than 500 medical devices. With its focus on versatility and compatibility, iSirona is particularly valuable as an easy but robust way for hospitals to connect almost all medical devices, regardless of brand – helping reduce the time spent manually charting patient data and instances of transcription errors while promoting efficient workflows by giving clinicians access to patient data wherever, whenever, and however they want to see it.

With its compact and fan-less design, iSirona is ideal for connecting multiple patient monitors, anesthesia machines, pumps, and other medical devices in operating rooms and ICUs where space is often restricted. The included multi-slotted mounting bracket allows iSirona to be fixed in a room or mounted directly to a mobile medical device (such as a ventilator) to provide connectivity wherever the medical device is used. The onboard rechargeable battery and local storage allow the iSirona to continue operating and buffering data for up to two hours in the event of a power outage or loss of network connectivity, helping reduce potential loss of data during emergencies and ensuring data continuity during patient transport. With software-configurable USB and Bluetooth® connections, iSirona is designed to integrate today's physical medical devices and support wireless and wearable devices in the future, as well as provide utility in both high- and low-acuity areas throughout the hospital.

In addition to iSirona and Root, the Hospital Automation platform encompasses a variety of components that together provide a holistic, end-to-end hospital data automation solution that aggregates high-fidelity parametric data, waveforms, and alarms from Masimo and third-party devices. For example, clinicians can surveil and remotely monitor patients from a central location, as well as view alarms, using Masimo Patient SafetyNet™. With Masimo Replica™, real-time monitoring data and alarm notifications can be relayed to mobile devices, reaching clinicians wherever they are – even beyond the hospital. Masimo UniView™ brings together data from multiple devices on an enlarged display that can be tailored for each patient case, helping ensure that data is visualized for clinical teams as usefully as possible. And Masimo Iris Analytics™ transforms data into richly detailed, customizable patient and even hospital-wide reports.

Joe Kiani, Founder and CEO of Masimo, said, "We believe that Masimo's Hospital Automation platform is the most customizable, versatile, and future-focused connectivity solution on the market. We continue to deepen our understanding of what data clinicians most want to have at their fingertips and how, in the ideal hospital of tomorrow, it will be available to them – and to develop monitoring, display, automation, notification, and reporting solutions that best address these needs now. iSirona, the latest member of the Hospital Automation family, makes it easier than ever to add connectivity wherever it's needed – bringing offline data online, smoothing workflows, and ultimately, helping clinicians improve patient care."

@Masimo || #Masimo

About Masimo

Masimo (NASDAQ: MASI) is a global medical technology company that develops and produces a wide array of industry-leading monitoring technologies, including innovative measurements, sensors, patient monitors, and automation and connectivity solutions. Our mission is to improve patient outcomes and reduce the cost of care. Masimo SET® Measure-through Motion and Low Perfusion™ pulse oximetry, introduced in 1995, has been shown in over 100 independent and objective studies to outperform other pulse oximetry technologies.1 Masimo SET® has also been shown to help clinicians reduce severe retinopathy of prematurity in neonates,2 improve CCHD screening in newborns,3 and, when used for continuous monitoring with Masimo Patient SafetyNet™ in post-surgical wards, reduce rapid response team activations, ICU transfers, and costs.4-7 Masimo SET® is estimated to be used on more than 200 million patients in leading hospitals and other healthcare settings around the world,8 and is the primary pulse oximetry at 9 of the top 10 hospitals listed in the 2020-21 U.S. News and World Report Best Hospitals Honor Roll.9 Masimo continues to refine SET® and in 2018, announced that SpO2 accuracy on RD SET® sensors during conditions of motion has been significantly improved, providing clinicians with even greater confidence that the SpO2 values they rely on accurately reflect a patient's physiological status. In 2005, Masimo introduced rainbow® Pulse CO-Oximetry technology, allowing noninvasive and continuous monitoring of blood constituents that previously could only be measured invasively, including total hemoglobin (SpHb®), oxygen content (SpOC™), carboxyhemoglobin (SpCO®), methemoglobin (SpMet®), Pleth Variability Index (PVi®), RPVi™ (rainbow® PVi), and Oxygen Reserve Index (ORi™). In 2013, Masimo introduced the Root® Patient Monitoring and Connectivity Platform, built from the ground up to be as flexible and expandable as possible to facilitate the addition of other Masimo and third-party monitoring technologies; key Masimo additions include Next Generation SedLine® Brain Function Monitoring, O3® Regional Oximetry, and ISA™ Capnography with NomoLine® sampling lines. Masimo's family of continuous and spot-check monitoring Pulse CO-Oximeters® includes devices designed for use in a variety of clinical and non-clinical scenarios, including tetherless, wearable technology, such as Radius-7® and Radius PPG™, portable devices like Rad-67™, fingertip pulse oximeters like MightySat® Rx, and devices available for use both in the hospital and at home, such as Rad-97®. Masimo hospital automation and connectivity solutions are centered around the Masimo Hospital Automation™ platform, and include Iris Gateway®, Patient SafetyNet, Replica™, Halo ION™, UniView™, UniView: 60™, and Masimo SafetyNet™. Additional information about Masimo and its products may be found at https://www.masimo.com. Published clinical studies on Masimo products can be found at https://www.masimo.com/evidence/featured-studies/feature.

ORi and RPVi have not received FDA 510(k) clearance and are not available for sale in the United States. The use of the trademark Patient SafetyNet is under license from University HealthSystem Consortium.

References

  1. Published clinical studies on pulse oximetry and the benefits of Masimo SET® can be found on our website at https://www.masimo.com. Comparative studies include independent and objective studies which are comprised of abstracts presented at scientific meetings and peer-reviewed journal articles.
  2. Castillo A et al. Prevention of Retinopathy of Prematurity in Preterm Infants through Changes in Clinical Practice and SpO2 Technology. Acta Paediatr. 2011 Feb;100(2):188-92.
  3. de-Wahl Granelli A et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009;Jan 8;338.
  4. Taenzer A et al. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology. 2010:112(2):282-287.
  5. Taenzer A et al. Postoperative Monitoring – The Dartmouth Experience. Anesthesia Patient Safety Foundation Newsletter. Spring-Summer 2012.
  6. McGrath S et al. Surveillance Monitoring Management for General Care Units: Strategy, Design, and Implementation. The Joint Commission Journal on Quality and Patient Safety. 2016 Jul;42(7):293-302.
  7. McGrath S et al. Inpatient Respiratory Arrest Associated With Sedative and Analgesic Medications: Impact of Continuous Monitoring on Patient Mortality and Severe Morbidity. J Patient Saf. 2020 14 Mar. DOI: 10.1097/PTS.0000000000000696.
  8. Estimate: Masimo data on file.
  9. http://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-roll-and-overview

Forward-Looking Statements

This press release includes forward-looking statements as defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, in connection with the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, among others, statements regarding the potential effectiveness of Masimo iSirona™, Hospital Automation™, and Root®. These forward-looking statements are based on current expectations about future events affecting us and are subject to risks and uncertainties, all of which are difficult to predict and many of which are beyond our control and could cause our actual results to differ materially and adversely from those expressed in our forward-looking statements as a result of various risk factors, including, but not limited to: risks related to our assumptions regarding the repeatability of clinical results; risks related to our belief that Masimo's unique noninvasive measurement technologies, including Masimo iSirona, Hospital Automation, and Root, contribute to positive clinical outcomes and patient safety; risks related to our belief that Masimo noninvasive medical breakthroughs provide cost-effective solutions and unique advantages; risks related to COVID-19; as well as other factors discussed in the "Risk Factors" section of our most recent reports filed with the Securities and Exchange Commission ("SEC"), which may be obtained for free at the SEC’s website at www.sec.gov. Although we believe that the expectations reflected in our forward-looking statements are reasonable, we do not know whether our expectations will prove correct. All forward-looking statements included in this press release are expressly qualified in their entirety by the foregoing cautionary statements. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of today’s date. We do not undertake any obligation to update, amend or clarify these statements or the “Risk Factors” contained in our most recent reports filed with the SEC, whether as a result of new information, future events or otherwise, except as may be required under the applicable securities laws.

Media Contact
Evan Lamb
Phone: (949) 396-3376
Email: elamb@masimo.com

Go to top